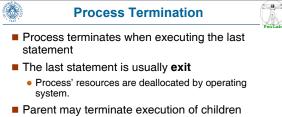


Two instances of the same program (e.g., MS Word) have the same code section but, in general, different current activities

Process Creation

- Processes need to be created
 - Processes are created by other processes
 - System call create_process
- Parent process create children processes
 - which, in turn create other processes, forming a tree of processes.
- Resource sharing
 - Parent and children share all resources.
 - Children share subset of parent's resources.
 - Parent and child share no resources.
- Execution

- Parent and children execute concurrently.
- Parent waits until children terminate.


Process Creation (Cont.)

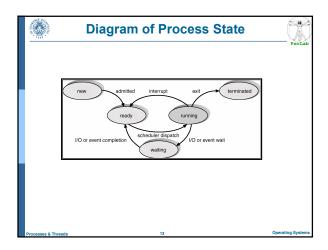
- Address space
 - Child duplicate of parent.
 - Child has a program loaded into it.

UNIX examples

- Each process is identified by the process identifier
- fork system call creates new process
- **exec** system call used after a **fork** to replace the process' memory space with a new program.

	Process Creation in UNIX	PerLab
# include <iostro< th=""><th>eam.h></th><th>101200</th></iostro<>	eam.h>	101200
	gc, char* argv[]) {	
int pid;		
pid=fork(); /*	genera un nuovo processo */	
if(pid<0) { /*	errore */	
cout <<	"Errore nella creazione del processo" << "\n\n";	
exit(-1);		
}		
else if(pid==	0) { /* processo figlio */	
execlp("/bin/ls", "ls", NULL);	
}		
else { /* proc	esso genitore */	
wait(NU	JLL);	
cout <<	"Il processo figlio ha terminato" << "\n\n";	
exit(0);		
}		
}		
Processes & Threads	10	Operating Systems

- processes (abort).
- Child has exceeded allocated resources.
- Task assigned to child is no longer required.
- Parent is exiting.


- Operating system does not allow child to continue if its parent terminates.
- Cascading termination.

Process Evolution

.....

As a process executes, it changes *state*

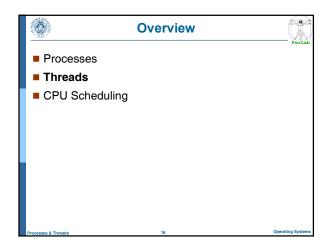
- new: The process is being created.
- running: Instructions are being executed.
- waiting: The process is waiting for some event to occur.
- ready: The process is waiting to be assigned to a process.
- terminated: The process has finished execution.

Context Switch

6.92

100

.....


- When CPU switches to another process, the system must save the state of the old process and load the saved state for the new process.
- Context-switch time is overhead

• the system does no useful work while switching.

CPU Scheduler

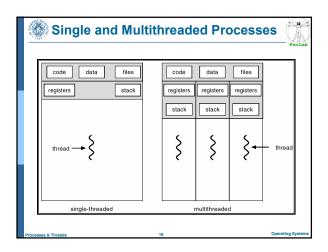
- Selects from among the processes in memory that are ready to execute, and allocates the CPU to one of them
- CPU scheduling decisions may take place when a process:
 - Terminates

- Switches from running to waiting state
- Switches from running to ready state
- Switches from waiting to ready
- Scheduling under 1 and 2 is **nonpreemptive**
- All other scheduling is preemptive

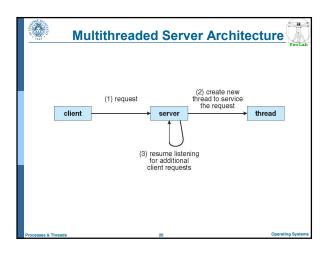
Process Resource ownership A process is an entity with some allocated resources Main memory

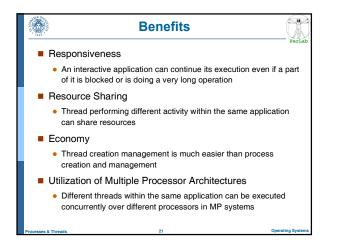
- I/O devices
- Files
- ٠....
- Scheduling/execution
 - A process can be viewed as a sequence of states (execution path)
 - The execution path of a process may be interleaved with the execution paths of other process
 - The process is the entity than can be scheduled for execution

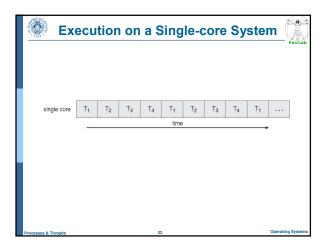
Processes and Threads

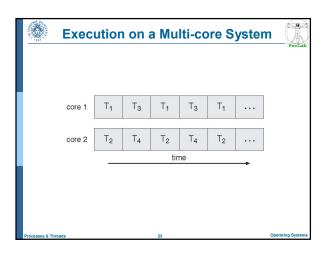

. 9

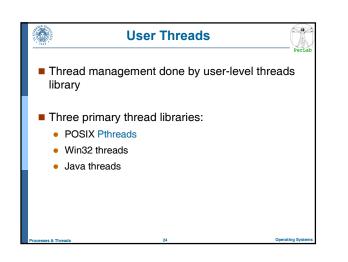
- In traditional operating systems the two concepts are not differentiated
- In modern operating systems
 - Process: unit of resource ownership
 - Thread:

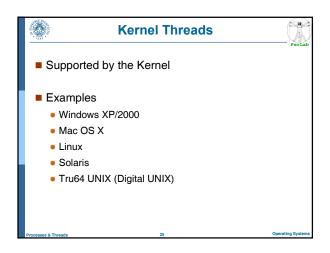

- Thread (Lightweight Process)
 - Threads belonging to the same process share the same resources (code, data, files, I/O devices, ...)

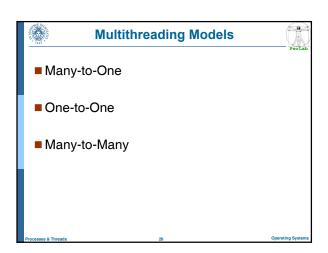

unit of scheduling

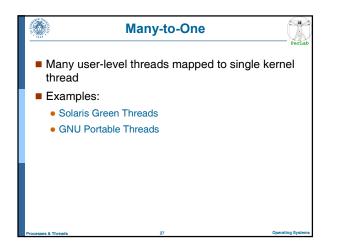

- Each thread has its own
 - Thread execution state (Running, Ready, ...)
 - → Context (Program Counter, Registers, Stack, ...)

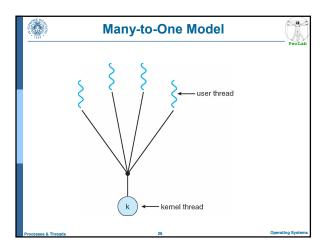


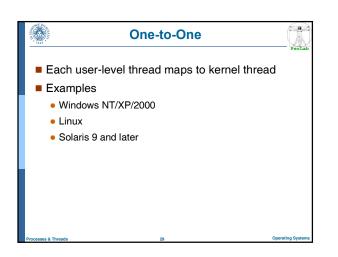


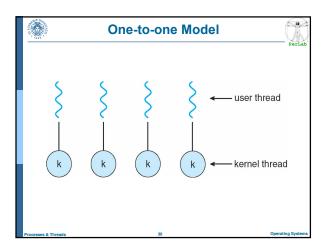


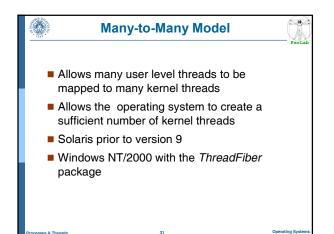


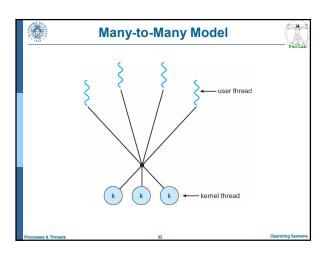


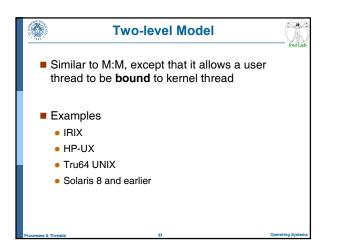




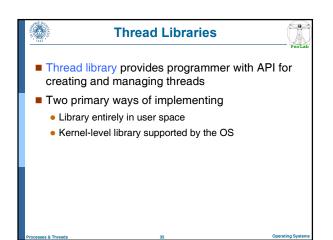


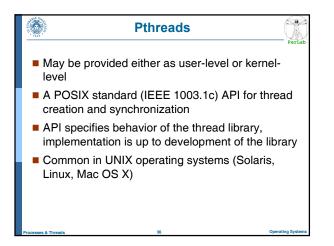


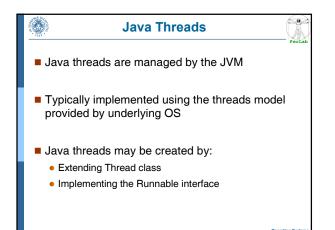


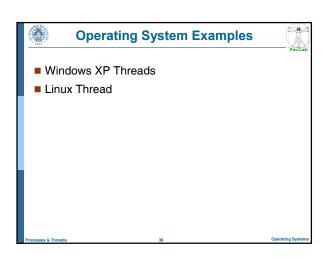


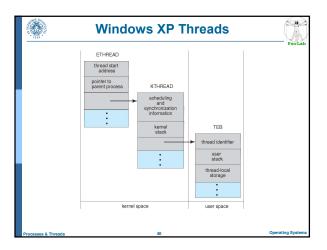




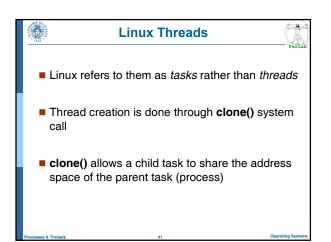




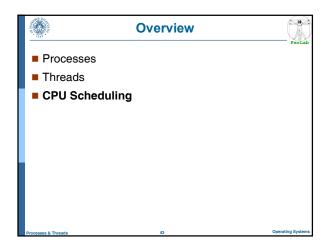


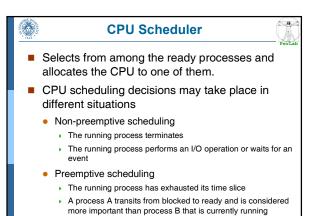

Windows XP Threads

Implements the one-to-one mapping, kernel-level

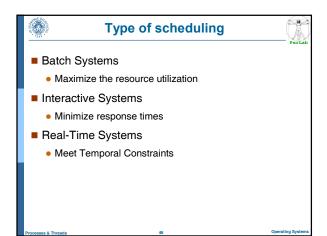

.....

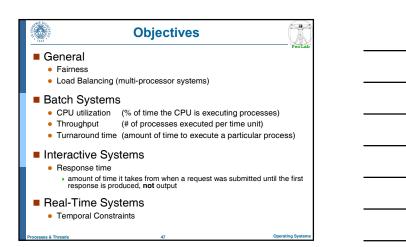
- Each thread contains
 - A thread id


- Register set
- Separate user and kernel stacks
- Private data storage area
- The register set, stacks, and private storage area are known as the context of the thread
- The primary data structures of a thread include:
 - ETHREAD (executive thread block)
 - KTHREAD (kernel thread block)
 - TEB (thread environment block)



 Lin	ux Threads	Per
flag	meaning]
CLONE_FS	File-system information is shared.	
CLONE_VM	The same memory space is shared.	
CLONE_SIGHAND	Signal handlers are shared.	
CLONE_FILES	The set of open files is shared.	1




Dispatcher

- Dispatcher module gives control of the CPU to the process selected by the scheduler; this involves:
 - Context Switch

<u>ب</u>

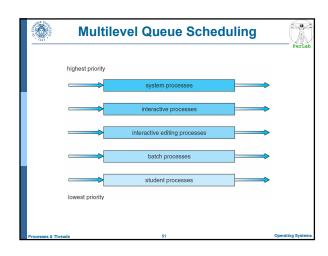
- Switching to user mode
- Jumping to the proper location in the user program to restart that program
- Dispatch latency
 - time it takes for the dispatcher to stop one process and start another running.
 - should be minimized

......

Scheduling Algorithms

Batch Systems

- First-Come First-Served (FCFS)
- Shortest Job First (SJF), Shortest Remaining Job First (SRJF)
- Approximated SJF
- Interactive Systems
 - Round Robin (RR)
 - Priority-based
- Soft Real-Time Systems
 - Priority-based?


(**9**

- General-purpose systems (e.g., PCs) typically manage different types of processes
 - Batch processes
 - Interactive processes
 - + user commands with different latency requirements
 - Soft real-time processes
 - multimedia applications
- Which is the most appropriate scheduling in such a context?

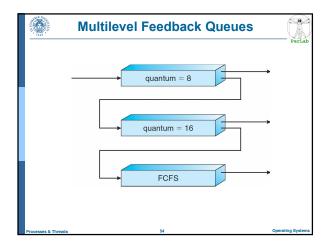
- Ready queue is partitioned into separate queues
 foreground (interactive)

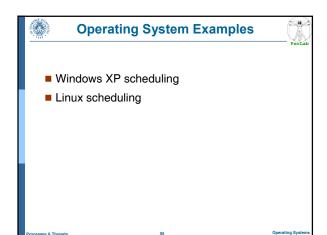
 - background (batch)
- Each queue has its own scheduling algorithm
 - foreground RR
 - background FCFS
- Scheduling must be done between the queues
 - Fixed priority scheduling
 - Serve all from foreground then from background. Possibility of starvation.
 - Time slice
 - each queue gets a certain amount of CPU time (i.e., 80% to foreground in RR, 20% to background in FCFS)

Multilevel Feedback Queue

< 9

- A process can move between the various queues; aging can be implemented this way
- Multilevel-feedback-queue scheduler defined by the following parameters:
 - number of queues
 - scheduling algorithm for each queue
 - method used to determine when to upgrade a process
 - method used to determine when to demote a process
 - method used to determine which queue a process will enter when that process needs service


Example of Multilevel Feedback Queue


Three queues:

- Q₀ RR with time quantum 8 milliseconds
- Q1 RR time quantum 16 milliseconds
- *Q*₂ FCFS

Scheduling

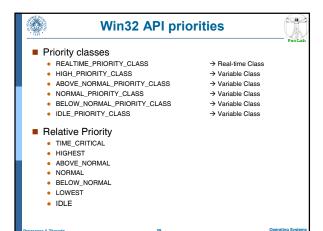
- A new job enters queue Q₀ which is served FCFS. When it gains CPU, job receives 8 milliseconds. If it does not finish in 8 milliseconds, job is moved to queue Q₁.
- At Q₁ job is again served FCFS and receives 16 additional milliseconds. If it still does not complete, it is preempted and moved to queue Q₂.

Windows XP Scheduling

6.92

12

......

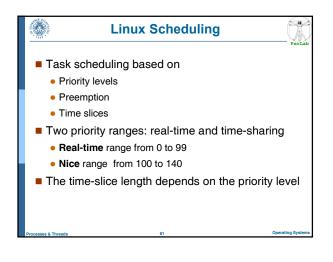

_____ PerLa

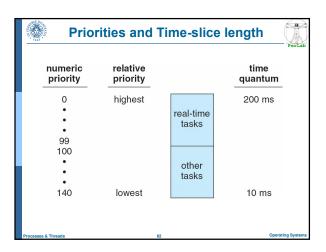
- Thread scheduling based on
 - Priority
 - Preemption
 - Time slice
- A thread is execute until one of the following event occurs
 - The thread has terminated its execution
 - The thread has exhausted its assigned time slice
 - The has executed a blocking system call
 - A thread higher-priority thread has entered the ready queue

Kernel Priorities

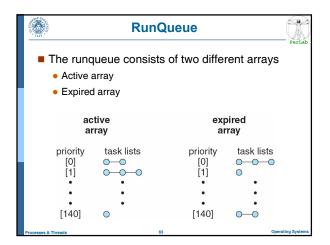
- Kernel priority scheme: 32 priority levels
 - Real-time class (16-31)
 - Variable class (1-15)

- Memory management thread (0)
- A different queue for each priority level
 - Queues are scanned from higher levels to lower levels
 - When no thread is found a special thread (idle thread) is executed

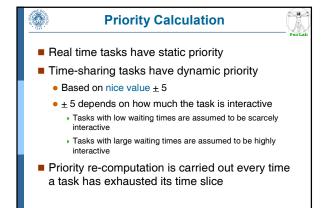

1249							P
		real- time	high	above normal	normal	below normal	idle priority
Ì	time-critical	31	15	15	15	15	15
ľ	highest	26	15	12	10	8	6
ľ	above normal	25	14	11	9	7	5
	normal	24	13	10	8	6	4
ľ	below normal	23	12	9	7	5	3
ľ	lowest	22	11	8	6	4	2
ľ	idle	16	1	1	1	1	1

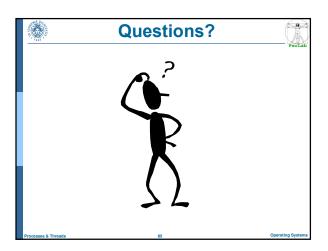

Class Priority Management

......


- A thread is stopped as soon as its time slice is exhausted
- Variable Class

- If a thread stops because time slice is exhausted, its priority level is decreased
- If a thread exits a waiting operation, its priority level is increased
 - → waiting for data from keyboard, mouse → significant increase
 → Waiting for disk operations → moderate increase
- Background/Foreground processes
 - The time slice of the foreground process is increased (typically by a factor 3)





Operating Sys

