
Giuseppe Anastasi
g.anastasi@iet.unipi.it

Pervasive Computing & Networking Lab. (PerLab)

Dept. of Information Engineering, University of Pisa

PerLab

Shared Memory

Model

Partially based on original slides by Silberschatz, Galvin and Gagne

2 Operating SystemsShared Memory Model

PerLab

Overview

� The Critical-Section Problem

� Software Solutions

� Synchronization Hardware

� Semaphores

� Monitors

� Synchronization Examples

3 Operating SystemsShared Memory Model

PerLab

Objectives

� To introduce the critical-section problem, whose
solutions can be used to ensure the consistency

of shared data

� To present both software and hardware solutions

of the critical-section problem

4 Operating SystemsShared Memory Model

PerLab

Overview

� The Critical-Section Problem

� Software Solutions

� Synchronization Hardware

� Semaphores

� Monitors

� Synchronization Examples

5 Operating SystemsShared Memory Model

PerLab

Producer-Consumer Problem

� The Producer process produces data that must

processed by the Consumer Process

� The inter-process communication occurs through

a shared buffer (shared memory)

� Bounded Buffer Size

� The producer process cannot insert a new item if the

buffer is full

� The Consumer process cannot extract an item if the

buffer is empty

6 Operating SystemsShared Memory Model

PerLab

Producer-Consumer Problem

� Shared data

#define BUFFER_SIZE 10

typedef struct {

. . .

} item;

item buffer[BUFFER_SIZE];

int in = 0;

int out = 0;

int counter = 0;

7 Operating SystemsShared Memory Model

PerLab

Producer-Consumer Problem

� Producer process

item nextProduced;

while (1) {

while (counter == BUFFER_SIZE); /* do nothing */

buffer[in] = nextProduced;

in = (in + 1) % BUFFER_SIZE;

counter++;

}

8 Operating SystemsShared Memory Model

PerLab

Producer-Consumer Problem

� Consumer process

item nextConsumed;

while (1) {

while (counter == 0); /* do nothing */

nextConsumed = buffer[out];

out = (out + 1) % BUFFER_SIZE;

counter--;

}

9 Operating SystemsShared Memory Model

PerLab

Producer-Consumer Problem

� The statements

counter++;

counter--;

must be performed atomically.

� Atomic operation means an operation that
completes in its entirety without interruption.

10 Operating SystemsShared Memory Model

PerLab

Producer-Consumer Problem

� The statement “count++” may be implemented in
machine language as:

register1 = counter

register1 = register1 + 1

counter = register1

� The statement “count—” may be implemented as:

register2 = counter

register2 = register2 – 1

counter = register2

11 Operating SystemsShared Memory Model

PerLab

Producer-Consumer Problem

� If both the producer and consumer attempt to
update the buffer concurrently, the assembly

language statements may get interleaved.

� Interleaving depends upon how the producer and
consumer processes are scheduled.

12 Operating SystemsShared Memory Model

PerLab

Race Condition

� Assume counter is initially 5. One interleaving of
statements is:

producer: register1 = counter (register1 = 5)
producer: register1 = register1 + 1 (register1 = 6)

consumer: register2 = counter (register2 = 5)
consumer: register2 = register2 – 1 (register2 = 4)

producer: counter = register1 (counter = 6)
consumer: counter = register2 (counter = 4)

� The value of count may be either 4 or 6, where the correct
result should be 5.

13 Operating SystemsShared Memory Model

PerLab

Race Condition

� Race condition

� The situation where several processes access and
manipulate shared data concurrently.

� The final value of the shared data depends upon which
process finishes last.

� To prevent race conditions, concurrent processes

must be synchronized.

14 Operating SystemsShared Memory Model

PerLab

The Critical-Section Problem

� n processes all competing to use some shared
data

� Each process has a code segment, called critical

section, in which the shared data is accessed.

� Problem – ensure that when one process is
executing in its critical section, no other process
is allowed to execute in its critical section.

15 Operating SystemsShared Memory Model

PerLab

Solution to Critical-Section Problem

1. Mutual Exclusion

� If process Pi is executing in its critical section, then no other
processes can be executing in their critical sections.

2. Progress

� If no process is executing in its critical section and there exist
some processes that wish to enter their critical section, then the
selection of the processes that will enter the critical section next
cannot be postponed indefinitely.

3. Bounded Waiting.

� A bound must exist on the number of times that other processes
are allowed to enter their critical sections after a process has
made a request to enter its critical section and before that request
is granted.

� Assume that each process executes at a nonzero speed

� No assumption concerning relative speed of the n processes.

16 Operating SystemsShared Memory Model

PerLab

General Process Structure

� General structure of process Pi

do {

entry section

critical section

exit section

reminder section

} while (TRUE)

17 Operating SystemsShared Memory Model

PerLab

Possible Solutions

� Software approaches

� Hardware solutions

� Interrupt disabling

� Special machine instructions

� Operating System Support

� Semaphores

� Programming language Support

� Monitor

� …

18 Operating SystemsShared Memory Model

PerLab

Overview

� The Critical-Section Problem

� Software Solutions

� Synchronization Hardware

� Semaphores

� Monitors

� Synchronization Examples

19 Operating SystemsShared Memory Model

PerLab

A Software Solution

Boolean lock=FALSE;

Process Pi {

do {

while (lock); // do nothing

lock=TRUE;

critical section

lock=FALSE;

remainder section

} while (TRUE);

}

Does it work?

20 Operating SystemsShared Memory Model

PerLab

Peterson’s Solution

� Two process solution

� Assume that the LOAD and STORE instructions
are atomic

� The two processes share two variables:

� int turn;

� Boolean flag[2]

� The variable turn indicates whose turn it is to
enter the critical section.

� The flag array is used to indicate if a process is
ready to enter the critical section

� flag[i] = true implies that process Pi is ready!

21 Operating SystemsShared Memory Model

PerLab

do {

flag[i] = TRUE;

turn = j;

while (flag[j] && turn == j);

critical section

flag[i] = FALSE;

remainder section

} while (TRUE);

}

Algorithm for Process Pi

22 Operating SystemsShared Memory Model

PerLab

Solution to Critical-section Problem Using Locks

do {

acquire lock

critical section

release lock

remainder section

} while (TRUE);

23 Operating SystemsShared Memory Model

PerLab

Overview

� The Critical-Section Problem

� Software Solutions

� Synchronization Hardware

� Semaphores

� Monitors

� Synchronization Examples

24 Operating SystemsShared Memory Model

PerLab

Synchronization Hardware

� Many systems provide hardware support for
critical section code

� Uniprocessors – could disable interrupts

� The running process should be pre-empted
during the critical section

� Modern machines provide special atomic
hardware instructions

25 Operating SystemsShared Memory Model

PerLab

Interrupt Disabling

do {

disable interrupt;

critical section

enable interrupt;

remainder section

} while (1);

26 Operating SystemsShared Memory Model

PerLab

Previous Solution

do {

while (lock); // do nothing

lock=TRUE;

critical section

lock=FALSE;

remainder section

} while (1);

The solution does not guaranteed the mutual exclusion
because the test and set on lock are not atomic

27 Operating SystemsShared Memory Model

PerLab

Test-And-Set Instruction

� Definition:

boolean TestAndSet (boolean *target) {

boolean rv = *target;

*target = TRUE;

return rv;

}

28 Operating SystemsShared Memory Model

PerLab

Solution using Test-And-Set

Boolean lock=FALSE;

do {

while (TestAndSet (&lock)); // do nothing

critical section

lock = FALSE;

remainder section

} while (TRUE);

29 Operating SystemsShared Memory Model

PerLab

Swap Instruction

void Swap (boolean *a, boolean *b) {

boolean temp = *a;

*a = *b;

*b = temp:

}

30 Operating SystemsShared Memory Model

PerLab

Solution using Swap

� Shared Boolean variable lock initialized to FALSE

� Each process has a local Boolean variable key

do {

key = TRUE;

while (key == TRUE) Swap (&lock, &key);

critical section

lock = FALSE;

remainder section

} while (TRUE);

This solution guarantees mutual exclusion but not

bounded waiting

31 Operating SystemsShared Memory Model

PerLab

Bounded-waiting Mutual Exclusion with TestandSet()

do {

waiting[i] = TRUE;

key = TRUE;

while (waiting[i] && key) key = TestAndSet(&lock);

waiting[i] = FALSE;

// critical section

j = (i + 1) % n;

while ((j != i) && !waiting[j]) j = (j + 1) % n;

if (j == i) lock = FALSE;

else waiting[j] = FALSE;

// remainder section

} while (TRUE);

32 Operating SystemsShared Memory Model

PerLab

Overview

� The Critical-Section Problem

� Software Solutions

� Synchronization Hardware

� Semaphores

� Monitors

� Synchronization Examples

33 Operating SystemsShared Memory Model

PerLab

Semaphore

� Synchronization tool that does not require busy
waiting

� Semaphore S – integer variable

� Can only be accessed via two indivisible (atomic)

operations

� wait() and signal()

� Originally called P() and V()

34 Operating SystemsShared Memory Model

PerLab

Semaphore

wait (S) {

while (S <= 0); // do nothing

S--;

}

signal (S) {

S++;

}

wait() and signal() must be atomic

35 Operating SystemsShared Memory Model

PerLab

Semaphore as General Synchronization Tool

� Counting semaphore

� integer value can range over an unrestricted domain

� Binary semaphore

� integer value can range only between 0 and 1; can be simpler to
implement

� Also known as mutex locks

� Can implement a counting semaphore S as a binary
semaphore

36 Operating SystemsShared Memory Model

PerLab

Semaphore as Mutex Tool

� Shared data:

semaphore mutex=1;

� Process Pi:

do {

wait (mutex);

// Critical Section

signal (mutex);

// Remainder section

} while (TRUE);

37 Operating SystemsShared Memory Model

PerLab

Semaphore Implementation

� Must guarantee that no two processes can
execute wait () and signal () on the same

semaphore at the same time

� Could have busy waiting (spinlock)

� Busy waiting wastes CPU cycles

� But avoids context switches

� May be useful when the critical section is short and/or
rarely occupied

� However applications may spend lots of time in
critical sections and therefore, generally, this is

not a good solution.

38 Operating SystemsShared Memory Model

PerLab

Semaphore Implementation

� Define a semaphore as a record

typedef struct {

int value;

struct process *L;

} semaphore;

� Assume two simple operations:

� block suspends the process that invokes it.

� wakeup(P) resumes the execution of a blocked
process P.

39 Operating SystemsShared Memory Model

PerLab

Implementation

Wait (semaphore *S) {

S->value--;

if (S->value < 0) {

add this process to S->list;

block();

}

}

Signal (semaphore *S) {

S->value++;

if (S->value <= 0) {

remove a process P from S->list;

wakeup(P);

}

}

40 Operating SystemsShared Memory Model

PerLab

Semaphore as a Synchronization Tool

� Execute B in Pj only after A executed in Pi

� Use semaphore flag initialized to 0

� Code:

Pi Pj

M M

A wait(flag)

signal(flag) B

41 Operating SystemsShared Memory Model

PerLab

Deadlock and Starvation

� Deadlock

� two or more processes are waiting indefinitely for an event that can
be caused by only one of the waiting processes.

� Let S and Q be two semaphores initialized to 1

P0 P1

wait(S); wait(Q);

wait(Q); wait(S);

M M

signal(S); signal(Q);

signal(Q) signal(S);

� Starvation – indefinite blocking.

� A process may never be removed from the semaphore queue in

which it is suspended.

42 Operating SystemsShared Memory Model

PerLab

Classical Problems of Synchronization

� Bounded-Buffer Problem

� Readers and Writers Problem

� Dining-Philosophers Problem

43 Operating SystemsShared Memory Model

PerLab

Bounded-Buffer Problem

� N buffers, each can hold one item

� Semaphore mutex initialized to the value 1

� Semaphore full initialized to the value 0

� Semaphore empty initialized to the value N.

44 Operating SystemsShared Memory Model

PerLab

Bounded-Buffer Problem

� Producer Process

do {

…

<produce an item in nextp>

…

wait(empty);

wait(mutex);

…

<add nextp to buffer>

…

signal(mutex);

signal(full);

} while (1);

� Consumer Process

do {

wait(full)

wait(mutex);

…

<remove item from buffer to

nextc>

…

signal(mutex);

signal(empty);

…

<consume item in nextc>

…

} while (1);

45 Operating SystemsShared Memory Model

PerLab

Readers-Writers Problem

� A data set is shared among a number of
concurrent processes

� Readers – only read the data set; they do not perform
any updates

� Writers – can both read and write

� Problem

� Allow multiple readers to read at the same time.

� Only one single writer can access the shared data at
the same time

46 Operating SystemsShared Memory Model

PerLab

Readers-Writers Problem

� Shared Data

� Data set

� Semaphore mutex initialized to 1

� Semaphore wrt initialized to 1

� Integer readcount initialized to 0

47 Operating SystemsShared Memory Model

PerLab

Readers-Writers Problem

� The structure of a writer process

do {

wait (wrt) ;

// writing is performed

signal (wrt) ;

} while (TRUE);

48 Operating SystemsShared Memory Model

PerLab

Readers-Writers Problem

� The structure of a reader process

do {

wait (mutex) ;

readcount ++ ;

if (readcount == 1) wait (wrt) ;

signal (mutex)

// reading is performed

wait (mutex) ;

readcount - - ;

if (readcount == 0) signal (wrt) ;

signal (mutex) ;

} while (TRUE);

49 Operating SystemsShared Memory Model

PerLab

Dining-Philosophers Problem

� Shared data

� Bowl of rice (data set)

� Semaphore chopstick [5] initialized to 1

50 Operating SystemsShared Memory Model

PerLab

Dining-Philosophers Problem

� The structure of Philosopher i:

do {

wait (chopstick[i]);

wait (chopStick[(i + 1) % 5]);

// eat

signal (chopstick[i]);

signal (chopstick[(i + 1) % 5]);

// think

} while (TRUE);

51 Operating SystemsShared Memory Model

PerLab

Problems with Semaphores

� Incorrect use of semaphore operations:

� signal (mutex) …. wait (mutex)

� wait (mutex) … wait (mutex)

� Omitting of wait (mutex) or signal (mutex)
(or both)

52 Operating SystemsShared Memory Model

PerLab

Overview

� The Critical-Section Problem

� Software Solutions

� Synchronization Hardware

� Semaphores

� Monitors

� Synchronization Examples

53 Operating SystemsShared Memory Model

PerLab

Monitors

� A high-level abstraction that provides a convenient and
effective mechanism for process synchronization

� Only one process may be active within the monitor at a
time

monitor monitor-name {

// shared variable declarations

procedure P1 (…) { …. }

…

procedure Pn (…) {……}

Initialization code (….) {

…

}

}

54 Operating SystemsShared Memory Model

PerLab

Schematic view of a Monitor

55 Operating SystemsShared Memory Model

PerLab

Condition Variables

� condition x, y;

� Two operations on a condition variable:

� x.wait () – a process that invokes the operation is

suspended.

� x.signal () – resumes one of processes (if any) that

invoked x.wait ()

56 Operating SystemsShared Memory Model

PerLab

Monitor with Condition Variables

57 Operating SystemsShared Memory Model

PerLab

Solution to Dining Philosophers

monitor DP {

enum { THINKING; HUNGRY, EATING) state [5] ;

condition self [5];

void pickup (int i) {

state[i] = HUNGRY;

test(i);

if (state[i] != EATING) self [i].wait;

}

void putdown (int i) {

state[i] = THINKING;

// test left and right neighbors

test((i + 4) % 5);

test((i + 1) % 5);

}

58 Operating SystemsShared Memory Model

PerLab

Solution to Dining Philosophers

void test (int i) {

if ((state[(i + 4) % 5] != EATING) &&

(state[i] == HUNGRY) &&

(state[(i + 1) % 5] != EATING)) {

state[i] = EATING ;

self[i].signal () ;

}

}

initialization_code() {

for (int i = 0; i < 5; i++)

state[i] = THINKING;

}

}

59 Operating SystemsShared Memory Model

PerLab

� Each philosopher invokes the operations
pickup() and putdown() in the following
sequence:

DiningPhilosophters.pickup (i);

EAT

DiningPhilosophers.putdown (i);

Solution to Dining Philosophers

60 Operating SystemsShared Memory Model

PerLab

A Monitor to Allocate Single Resource

monitor ResourceAllocator {

boolean busy;

condition x;

void acquire(int time) {

if (busy) x.wait(time);

busy = TRUE;

}

void release() {

busy = FALSE;

x.signal();

}

initialization code() {

busy = FALSE;

}

}

61 Operating SystemsShared Memory Model

PerLab

Overview

� The Critical-Section Problem

� Software Solutions

� Synchronization Hardware

� Semaphores

� Monitors

� Synchronization Examples

62 Operating SystemsShared Memory Model

PerLab

Synchronization Examples

� Solaris

� Windows XP

� Linux

� Pthreads

63 Operating SystemsShared Memory Model

PerLab

Solaris Synchronization

� Implements a variety of locks to support
multitasking, multithreading (including real-time

threads), and multiprocessing

� Adaptive mutexes for efficiency when protecting

data from short code segments

� Uses condition variables and readers-writers
locks when longer sections of code need access

to data

64 Operating SystemsShared Memory Model

PerLab

Windows XP Synchronization

� Uses interrupt masks to protect access to global
resources from kernel threads on uniprocessor

systems

� Uses spinlocks on multiprocessor systems

� For out-of-kernel synch provides dispatcher
objects

� may act as either mutexes and semaphores

� Dispatcher objects may also provide events

� An event acts much like a condition variable

65 Operating SystemsShared Memory Model

PerLab

Linux Synchronization

� Linux:

� Prior to kernel Version 2.6, disables interrupts to
implement short critical sections

� Version 2.6 and later, fully preemptive

� Linux provides:

� semaphores

� spin locks

66 Operating SystemsShared Memory Model

PerLab

Pthreads Synchronization

� Pthreads API is OS-independent

� It provides:

� mutex locks

� condition variables

� Non-portable extensions include:

� read-write locks

� spin locks

67 Operating SystemsShared Memory Model

PerLab

Questions?

