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Objectives

� To introduce the critical-section problem, whose 
solutions can be used to ensure the consistency 

of shared data

� To present both software and hardware solutions 

of the critical-section problem
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Producer-Consumer Problem

� The Producer process produces data that must 

processed by the Consumer Process

� The inter-process communication occurs through 

a shared buffer (shared memory)

� Bounded Buffer Size

� The producer process cannot insert a new item if the 

buffer is full

� The Consumer process cannot extract an item if the 

buffer is empty
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Producer-Consumer Problem

� Shared data

#define BUFFER_SIZE 10

typedef struct {

. . .

} item;

item buffer[BUFFER_SIZE];

int in = 0;

int out = 0;

int counter = 0;
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Producer-Consumer Problem

� Producer process 

item nextProduced;

while (1) {

while (counter == BUFFER_SIZE); /* do nothing */

buffer[in] = nextProduced;

in = (in + 1) % BUFFER_SIZE;

counter++;

}
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Producer-Consumer Problem

� Consumer process

item nextConsumed;

while (1) {

while (counter == 0); /* do nothing */

nextConsumed = buffer[out];

out = (out + 1) % BUFFER_SIZE;

counter--;

}
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Producer-Consumer Problem

� The statements

counter++;

counter--;

must be performed atomically.

� Atomic operation means an operation that 
completes in its entirety without interruption.
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Producer-Consumer Problem

� The statement “count++” may be implemented in 
machine language as:

register1 = counter

register1 = register1 + 1

counter = register1

� The statement “count—” may be implemented as:

register2 = counter

register2 = register2 – 1

counter = register2
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Producer-Consumer Problem

� If both the producer and consumer attempt to 
update the buffer concurrently, the assembly 

language statements may get interleaved.

� Interleaving depends upon how the producer and 
consumer processes are scheduled.
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Race Condition

� Assume counter is initially 5. One interleaving of 
statements is:

producer: register1 = counter (register1 = 5)
producer: register1 = register1 + 1 (register1 = 6)

consumer: register2 = counter (register2 = 5)
consumer: register2 = register2 – 1 (register2 = 4)

producer: counter = register1 (counter = 6)
consumer: counter = register2 (counter = 4)

� The value of count may be either 4 or 6, where the correct 
result should be 5.
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Race Condition

� Race condition

� The situation where several processes access and 
manipulate shared data concurrently. 

� The final value of the shared data depends upon which 
process finishes last.

� To prevent race conditions, concurrent processes 

must be synchronized.
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The Critical-Section Problem

� n processes all competing to use some shared 
data

� Each process has a code segment, called critical 

section, in which the shared data is accessed.

� Problem – ensure that when one process is 
executing in its critical section, no other process 
is allowed to execute in its critical section.
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Solution to Critical-Section Problem

1. Mutual Exclusion

� If process Pi is executing in its critical section, then no other 
processes can be executing in their critical sections.

2. Progress

� If no process is executing in its critical section and there exist 
some processes that wish to enter their critical section, then the 
selection of the processes that will enter the critical section next 
cannot be postponed indefinitely.

3. Bounded Waiting. 

� A bound must exist on the number of times that other processes 
are allowed to enter their critical sections after a process has
made a request to enter its critical section and before that request 
is granted.

� Assume that each process executes at a nonzero speed 

� No assumption concerning relative speed of the n processes.
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General Process Structure

� General structure of process Pi

do {

entry section

critical section

exit section

reminder section

} while (TRUE)
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Possible Solutions

� Software approaches

� Hardware solutions

� Interrupt disabling

� Special machine instructions

� Operating System Support

� Semaphores

� Programming language Support

� Monitor

� …
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A Software Solution

Boolean lock=FALSE; 

Process Pi {

do { 

while (lock); // do nothing

lock=TRUE;

critical section

lock=FALSE; 

remainder section 

} while (TRUE);

}

Does it work? 
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Peterson’s Solution

� Two process solution

� Assume that the LOAD and STORE instructions 
are atomic

� The two processes share two variables:

� int turn; 

� Boolean flag[2]

� The variable turn indicates whose turn it is to 
enter the critical section.  

� The flag array is used to indicate if a process is 
ready to enter the critical section

� flag[i] = true implies that process Pi is ready!
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do { 

flag[i] = TRUE; 

turn = j;

while (flag[j] && turn == j);

critical section

flag[i] = FALSE;

remainder section 

} while (TRUE);

}

Algorithm for Process Pi
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Solution to Critical-section Problem Using Locks

do { 

acquire lock

critical section

release lock

remainder section 

} while (TRUE); 
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Synchronization Hardware

� Many systems provide hardware support for 
critical section code

� Uniprocessors – could disable interrupts

� The running process should be pre-empted 
during the critical section 

� Modern machines provide special atomic 
hardware instructions
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Interrupt Disabling

do { 

disable interrupt;

critical section

enable interrupt; 

remainder section 

} while (1);
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Previous Solution

do { 

while (lock); // do nothing

lock=TRUE;

critical section

lock=FALSE; 

remainder section 

} while (1);

The solution does not guaranteed the mutual exclusion 
because the test and set on lock are not atomic 
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Test-And-Set Instruction 

� Definition:

boolean TestAndSet (boolean *target) {

boolean rv = *target;

*target = TRUE;

return rv;

}
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Solution using Test-And-Set

Boolean lock=FALSE;

do {

while (TestAndSet (&lock )); // do nothing

critical section

lock = FALSE;

remainder section 

} while (TRUE);
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Swap  Instruction

void Swap (boolean *a, boolean *b) {

boolean temp = *a;

*a = *b;

*b = temp:

}
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Solution using Swap

� Shared Boolean variable lock initialized to FALSE

� Each process has a local Boolean variable key

do {

key = TRUE;

while ( key == TRUE) Swap (&lock, &key );

critical section

lock = FALSE;

remainder section 

} while (TRUE);

This solution guarantees mutual exclusion but not 

bounded waiting
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Bounded-waiting Mutual Exclusion with TestandSet()

do { 

waiting[i] = TRUE; 

key = TRUE; 

while (waiting[i] && key) key = TestAndSet(&lock); 

waiting[i] = FALSE;

// critical section 

j = (i + 1) % n; 

while ((j != i) && !waiting[j]) j = (j + 1) % n; 

if (j == i) lock = FALSE; 

else waiting[j] = FALSE;

// remainder section 

} while (TRUE);
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Semaphore

� Synchronization tool that does not require busy 
waiting 

� Semaphore S – integer variable

� Can only be accessed via two indivisible (atomic) 

operations

� wait() and signal()

� Originally called P() and V()
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Semaphore

wait (S) { 

while (S <= 0); // do nothing

S--;

}

signal (S) { 

S++;

}

wait() and signal() must be atomic
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Semaphore as General Synchronization Tool

� Counting semaphore

� integer value can range over an unrestricted domain

� Binary semaphore

� integer value can range only between 0 and 1; can be simpler to 
implement

� Also known as mutex locks

� Can implement a counting semaphore S as a binary 
semaphore
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Semaphore as Mutex Tool

� Shared data:

semaphore mutex=1;

� Process Pi: 

do {

wait (mutex);

// Critical Section

signal (mutex);

// Remainder section

} while (TRUE);
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Semaphore Implementation

� Must guarantee that no two processes can 
execute wait () and signal () on the same 

semaphore at the same time

� Could have busy waiting (spinlock)

� Busy waiting wastes CPU cycles

� But avoids context switches

� May be useful when the critical section is short and/or 
rarely occupied

� However applications may spend lots of time in 
critical sections and therefore, generally, this is 

not a good solution.
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Semaphore Implementation

� Define a semaphore as a record

typedef struct {

int value;

struct process *L;

} semaphore;

� Assume two simple operations:

� block suspends the process that invokes it.

� wakeup(P) resumes the execution of a blocked 
process P.
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Implementation

Wait (semaphore *S) { 

S->value--; 

if (S->value < 0) { 

add this process to S->list; 

block(); 

} 

}

Signal (semaphore *S) { 

S->value++; 

if (S->value <= 0) { 

remove a process P from S->list; 

wakeup(P); 

}

}
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Semaphore as a Synchronization Tool

� Execute B in Pj only after A executed in Pi

� Use semaphore flag initialized to 0

� Code:

Pi Pj

M M

A wait(flag)

signal(flag) B
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Deadlock and Starvation

� Deadlock

� two or more processes are waiting indefinitely for an event that can 
be caused by only one of the waiting processes.

� Let S and Q be two semaphores initialized to 1

P0 P1

wait(S); wait(Q);

wait(Q); wait(S);

M M

signal(S); signal(Q);

signal(Q) signal(S);

� Starvation – indefinite blocking.  

� A process may never be removed from the semaphore queue in 

which it is suspended.
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Classical Problems of Synchronization

� Bounded-Buffer Problem

� Readers and Writers Problem

� Dining-Philosophers Problem
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Bounded-Buffer Problem

� N buffers, each can hold one item

� Semaphore mutex initialized to the value 1

� Semaphore full initialized to the value 0

� Semaphore empty initialized to the value N.

44 Operating SystemsShared Memory Model

PerLab

Bounded-Buffer Problem

� Producer Process

do { 

…

<produce an item in nextp>

…

wait(empty);

wait(mutex);

…

<add nextp to buffer>

…

signal(mutex);

signal(full);

} while (1);

� Consumer Process

do { 

wait(full)

wait(mutex);

…

<remove item from buffer to

nextc>

…

signal(mutex);

signal(empty);

…

<consume item in nextc>

…

} while (1);
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Readers-Writers Problem

� A data set is shared among a number of 
concurrent processes

� Readers – only read the data set; they do not perform 
any updates

� Writers – can both read and write

� Problem 

� Allow multiple readers to read at the same time.  

� Only one single writer can access the shared data at 
the same time
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Readers-Writers Problem

� Shared Data

� Data set

� Semaphore mutex initialized to 1

� Semaphore wrt initialized to 1

� Integer readcount initialized to 0
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Readers-Writers Problem

� The structure of a writer process

do {

wait (wrt) ;

// writing is performed

signal (wrt) ;

} while (TRUE);
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Readers-Writers Problem

� The structure of a reader process

do {

wait (mutex) ;

readcount ++ ;

if (readcount == 1) wait (wrt) ;

signal (mutex)

// reading is performed

wait (mutex) ;

readcount - - ;

if (readcount == 0) signal (wrt) ;

signal (mutex) ;

} while (TRUE);
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Dining-Philosophers Problem

� Shared data 

� Bowl of rice (data set)

� Semaphore chopstick [5] initialized to 1
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Dining-Philosophers Problem

� The structure of Philosopher i:

do  { 

wait (chopstick[i]);

wait (chopStick[ (i + 1) % 5] );

//  eat

signal (chopstick[i]);

signal (chopstick[ (i + 1) % 5] );

//  think

} while (TRUE);
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Problems with Semaphores

� Incorrect use of semaphore operations:

� signal (mutex)  ….  wait (mutex)

� wait (mutex)  … wait (mutex)

� Omitting  of wait (mutex) or signal (mutex) 
(or both)
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Monitors

� A high-level abstraction that provides a convenient and 
effective mechanism for process synchronization

� Only one process may be active within the monitor at a 
time

monitor monitor-name {

// shared variable declarations

procedure P1 (…) { …. }

…

procedure Pn (…) {……}

Initialization code ( ….) {

…

}

}
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Schematic view of a Monitor
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Condition Variables

� condition x, y;

� Two operations on a condition variable:

� x.wait () – a process that invokes the operation is 

suspended.

� x.signal () – resumes one of processes (if any) that

invoked x.wait ()
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Monitor with Condition Variables
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Solution to Dining Philosophers

monitor DP { 

enum { THINKING; HUNGRY, EATING) state [5] ;

condition self [5];

void pickup (int i) { 

state[i] = HUNGRY;

test(i);

if (state[i] != EATING) self [i].wait;

}

void putdown (int i) { 

state[i] = THINKING;

// test left and right neighbors

test((i + 4) % 5);

test((i + 1) % 5);

}
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Solution to Dining Philosophers

void test (int i) { 

if ( (state[(i + 4) % 5] != EATING) &&

(state[i] == HUNGRY) &&

(state[(i + 1) % 5] != EATING) ) { 

state[i] = EATING ;

self[i].signal () ;

}

}

initialization_code() { 

for (int i = 0; i < 5; i++)

state[i] = THINKING;

}

}
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� Each philosopher invokes the operations 
pickup() and putdown() in the following 
sequence:

DiningPhilosophters.pickup (i);

EAT

DiningPhilosophers.putdown (i);

Solution to Dining Philosophers
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A Monitor to Allocate Single Resource

monitor ResourceAllocator { 

boolean busy; 

condition x; 

void acquire(int time) { 

if (busy) x.wait(time); 

busy = TRUE; 

} 

void release() { 

busy = FALSE; 

x.signal(); 

} 

initialization code() {

busy = FALSE; 

}

}
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Synchronization Examples

� Solaris

� Windows XP

� Linux

� Pthreads
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Solaris Synchronization

� Implements a variety of locks to support 
multitasking, multithreading (including real-time 

threads), and multiprocessing

� Adaptive mutexes for efficiency when protecting 

data from short code segments

� Uses condition variables and readers-writers
locks when longer sections of code need access 

to data
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Windows XP Synchronization

� Uses interrupt masks to protect access to global 
resources from kernel threads on uniprocessor

systems

� Uses spinlocks on multiprocessor systems

� For out-of-kernel synch provides dispatcher 
objects 

� may act as either mutexes and semaphores

� Dispatcher objects may also provide events

� An event acts much like a condition variable
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Linux Synchronization

� Linux:

� Prior to kernel Version 2.6, disables interrupts to 
implement short critical sections

� Version 2.6 and later, fully preemptive

� Linux provides:

� semaphores

� spin locks
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Pthreads Synchronization

� Pthreads API is OS-independent

� It provides:

� mutex locks

� condition variables

� Non-portable extensions include:

� read-write locks

� spin locks
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Questions?


