Packet Switched Networks

Goals

\square Understanding principles behind packet switched networks
\square Introducing some examples of packed switched networks

Packet Switched Networks

- Link-layer switches
- Switched Ethernet
\square Virtual LANs
\square Wide-Area Packet Switched Networks
- ATM Networks
- Link virtualization

Hubs

physical-layer ("dumb") repeaters:
o bits coming in one link go out all other links at same rate
o all nodes connected to hub can collide with one another
o no frame buffering
o no CSMA/CD at hub: host NICs detect collisions

Switch

\square link-layer device: smarter than hubs, take active role
o store, forward Ethernet frames
o examine incoming frame's MAC address, selectively forward frame to one-or-more outgoing links when frame is to be forwarded on segment
\square transparent
o hosts are unaware of presence of switches
\square plug-and-play, self-learning
o switches do not need to be configured

Switch: allows multiple simultaneous

 transmissionsa hosts have dedicated, direct connection to switch
\square switches buffer packets

- Ethernet protocol used on each incoming link, but no collisions; full duplex
o each link is its own collision domain
switching: $A-t o-A^{\prime}$ and $B-$ to- B^{\prime} simultaneously, without collisions
- not possible with dumb hub

switch with six interfaces (1,2,3,4,5,6)

Switch Table

- Q: how does switch know that

A' reachable via interface 4, B^{\prime} reachable via interface 5 ?

ㅁ A: each switch has a switch table, each entry:

- (MAC address of host, interface to reach host, time stamp)

ㅁ Q: how are entries created, maintained in switch table?

switch with six interfaces (1,2,3,4,5,6)

Switch: self-learning

\square switch learns which hosts can be reached through which interfaces
o when frame received, switch "learns" location of sender: incoming LAN segment

- records sender/location pair in switch table

MAC addr	interface	TTL
A	1	60
Switch table (initially empty)		
	Packet Switched Networks	

Switch: frame filtering/forwarding

When frame received:

1. record link associated with sending hos \dagger
2. index switch table using MAC dest address
3. if entry found for destination then \{ if dest on segment from which frame arrived then drop the frame else forward the frame on interface indicated \}
else flood forward on all but the interface on which the frame arrived

Self-learning,

 forwarding: example\square frame destination unknown: flood
a destination A location known: selective send

MAC addr	interface	TTL		
A	1	60		Switch table
:---:				
(initially empty)				

Packet Switched Networks

Packet Switched Networks

- Link-layer switches
a Switched Ethernet
\square Virtual LANs
\square Wide-Area Packet Switched Networks
- ATM Networks
- Link virtualization

Interconnecting switches

switches can be connected together

\square Q: sending from A to G - how does S_{1} know to forward frame destined to G via S_{4} and S_{3} ?
\square A: self learning! (works exactly the same as in single-switch case!)

Self-learning multi-switch example

Suppose C sends frame to I, I responds to C

\square Q: show switch tables and packet forwarding in S_{1}, S_{2}, S_{3}, S_{4}

Properties of Switched Ethernet

\square Elimination of Collision

- Significant performance improvement
\square Support of heterogeneous links
- The switch is able to adapt to different links (10BaseT, 100BaseT, 100BaseFX,Easy Management
o Faulty links can be automatically disconnected by the switch
Improved Security
- Sniffing frames is more difficult
- Switch poisoning still possible

Packet Switched Networks

\square Link-layer switches
\square Switched Ethernet
\square Virtual LANs
\square Wide-Area Packet Switched Networks

- ATM Networks
\square Link virtualization

VLANs: motivation

What's wrong with this picture?

- Single broadcast domain:
- all layer-2 broadcast traffic (ARP, DHCP) crosses entire LAN (security/privacy, efficiency issues)
\square Inefficient use of switches
- each lowest level switch has only few ports in use
- A single big switch could be enough
\square Managing users
- A SE user moves office to EE, but wants connect to SE switch
- Cabling should be changed

VLANs

Virtual Local
Area Network
Switch(es) supporting VLAN capabilities can be configured to define multiple virtual LANS over single physical LAN infrastructure.

Port-based VLAN: switch ports groúped (by switch management software) so that single physical switch \qquad

Electrical Engineering (VLAN ports 1-8)

Computer Engineering (VLAN ports 9-15)
... operates as multiple virtual switches

Port-based VLAN

a traffic isolation: frames to/from ports 1-8 can only reach ports 1-8
o can also define VLAN based on MAC addresses of endpoints, rather than switch port
I dynamic membership:
ports can be dynamically assigned among VLANs

\square forwarding between VLANS:
done via routing (just as with separate switches)
o in practice vendors sell combined switches plus routers

VLANS spanning multiple switches

Electrical Engineering
(VLAN ports 1-8)

Computer Science
(VLAN ports 9-15)

Ports 2,3,5 belong to EE VLAN
Ports $4,6,7,8$ belong to CS VLAN
\square trunk port: carries frames between VLANS defined over multiple physical switches

- frames forwarded within VLAN between switches can't be vanilla frames (must carry VLAN ID info)
o 802.1 q protocol adds/removed additional header fields for frames forwarded between trunk ports

802.1Q VLAN frame format

Tag Control Information (12 bit VLAN ID field,
3 bit priority field like IP TOS)

Packet Switched Networks

\square Link-layer switches
Switched Ethernet
\square Virtual LANs
a Wide-Area Packet-Switched Networks

- ATM Networks
\square Link virtualization

Switched Ethernet

a Path from Host/Router A to Host/Router I

Packet-switched Wide Area Network

\square Nodes identified through a unique address

- Similar to the Ethernet MAC address

Type of Service

\square Connectionless: each packet is managed on an individual basis

- Also known as datagram service
\square Connection: Virtual Circuit is preliminary established and all packets follow the same path

Asynchronous Transfer Mode: ATM

1990's standard for high-speed (155Mbps to 622
Mbps and higher) Broadband Integrated Service Digital Network architecture
\square Goal: integrated, end-end transport of carry voice, video, data
o meeting timing/QoS requirements of voice, video (versus Internet best-effort model)
o "next generation" telephony: technical roots in telephone world
o packet-switching (fixed length packets, called "cells") using virtual circuits

ATM Services

\square Constant Bit Rate (CBR)
\square Variable Bit Rate (VBR)

- Available Bit Rate (ABR)
\square Unspecified Bit Rate (UBR)

ATM Cell

Virtual Circuit (VC)

source-to-destination path

behaves much like telephone circuit
performance-wise
o network actions along source-to-dest path

- call setup, teardown for each call before data can flow
\square each packet carries VC identifier (not destination host address)
\square every switch on source-dest path maintains "state" for each passing connection
\square link, switch resources (bandwidth, buffers) may be allocated to VC (dedicated resources = predictable service)

VC setup (and teardown)

I Used in ATM, frame-relay, X. 25

VC implementation

a VC consists of:

1. path from source to destination
2. $V C$ numbers, one number for each link along path
3. entries in forwarding tables in routers along path
\square packet belonging to VC carries VC number (rather than dest address)
\square VC number can be changed on each link.

- New VC number comes from forwarding table

Datagram service

\square no call setup at network layer
\square switches: no state about end-to-end connections

- no concept of "connection"
\square packets between the same source-destination pair may take different paths
\square packets forwarded using destination host address

Forwarding table

Destination Address Range
Link Interface
11001000000101110001000000000000
through
0
11001000000101110001011111111111
11001000000101110001100000000000
through
1
11001000000101110001100011111111
11001000000101110001100100000000
through
2
11001000000101110001111111111111
otherwise

Packet Switched Networks

- Link-layer switches
\square Switched Ethernet
\square Virtual LANs
\square Wide-Area Packet-Switched Networks
- ATM Networks
- Link virtualization

Virtualization of Networks

\square Virtualization of resources: powerful abstraction in systems engineering:

- virtual memory
- virtual devices
- virtual machines: e.g., java
\square Virtual Link:
- The path from S to D is regarded as a point-to-point virtual link
- Just like a physical point-to-point link
- The service type is thus not relevant from the Internet point of view

Summary

- Principles behind packet switched networks
\square Switched LANS, VLANs
\square Wide-Area Packet-Switched Networks
- ATM
\square Virtualized networks as a point-to point link

